微波光子技术[1]是伴随着半导体激光器、集成光学、光纤波导光学和微波单片集成电路的发展而产生的一种新兴技术,是微波和光子技术结合的产物,它在射频(RF)信号的产生、传输和处理等方面具有潜在的应用前景。由于射频信号的光滤波技术具有可实现宽带可调谐滤波的功能,因而能够克服电子瓶颈、滤除强干扰信号等优势。现阶段国内外实验成功且已经取得很大进展的微波光子滤波器Q值可以达到983[2],带宽可以低到只有0.32MHz[3],边模抑制比可以高于40dB[4],调谐范围可以从34.1MHz调谐到34.1GHz[5]。由此可见全光可调谐滤波器等技术在通信等诸多领域具有重要的潜在应用价值。现在已通过在系统中引入全光滤波技术,突破了电子瓶颈的限制,滤除了混频器中的噪声[3],有望提高接受机的性能。
影响和限制光子滤波器性能的因素很多,比如线形度和动态范围、源的相干性、极化特性、正系数、FSR、噪声、可重构性和可调谐性.现在,微波光子滤波器的关键问题在于可调谐和负抽头的实现,因此本文着重以横向滤波器为例讨论可调谐和负抽头这两个方面的问题。
1、基本原理
图1为使用单光源获得N个抽头的微波光子横向滤波器[3,6]原理图。利用多光源来实现的原理也大致相同。光载波exp{j[w+f(t)]}(w为载波频率,f(t)为相位)被射频信号SRF(t)所调制,调制后的信号经过耦合器分为N路,利用色散机制对1,2,…N路信号提供T,2T,…NT的时间延迟后,经过N路抽头而获不同时间延迟的信号由输出端的耦合器合并后得到zui终的输出。探测器之前的光信号可表示为
式中am为第m个抽头的权重。由式(1)可以得到在微波光子滤波器的输出端探测到的光电流为
式中R为探测器的响应度,符号〈〉代表对时间取平均。借助于互相干函数运算,(2)式中对时间求平均的项(记作Gmn)有
式中Dn为光源线宽,它是光源相干时间tcoh的倒数。(2)式的第 一项为非相干项对光电流的贡献,第 二项为相干部分的贡献。如果要滤波器工作在非相干条件下,只需光源的相干时间tcoh远远小于基本延迟时间差T,此时(即非相干条件下)光电流的表达式为
从(6)式可以看出,滤波器的性能由滤波器级数N(实现Q值和带宽的改变)、加权系数am(实现重构,滤波器的形状系数的改变,通过使用可以容易实现)以及延迟时间T(实现中心频率和FSR改变)决定。
1.1、可调谐性的实现
实现可调谐的重要思路之一为:通过改变滤波器的结构参数或者外界所施加的物理参数的方法改变延迟时间,从而使滤波器的中心频率变化或自由光谱范围变化,进而实现可调谐。
目前,改变延迟时间的技术主要有: